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The software division at the Oklahoma
City Air Logistics Center was assessed

as Software Engineering Institute (SEI)
Capability Maturity Model® (CMM®) Level
4 in 1996, and became registered under the
ISO 9001 standard for Quality Systems in
1998. The ISO registration was under the
software implementation of the ISO stan-
dard known as “TickIT.” For these accom-
plishments and several others, the software
division was the recipient of the Institute
of Electrical and Electronics Engineers’
Software Process Achievement Award for
1999, a truly significant award for the divi-
sion’s efforts.

A large portion of the division’s suc-
cess has been due to embracing the
Earned Value Management (EVM)
methodology. EVM provided the needed
structure to achieve many of the CMM
Level 2 and 3 Key Process Areas (KPA) of
the SEI’s CMM. And, due to its numerical
basis, EVM facilitated the achievement of
the CMM Level 4 KPA, Quantitative
Process Management (QPM), at that time.

However, today the updated QPM
KPA strongly urges using control charts
for statistical process control (SPC) with
the new goal: “Statistically Manage the
Sub-Processes [1].” CMM evaluators are
now looking for SPC control charts as evi-
dence of satisfying this KPA. Along with
the rest of the software industry, we have
struggled to meaningfully apply SPC con-
trol charts.

Although there is growing evidence of
organizations following the CMM goal by
implementing SPC with the defect data
obtained from peer reviews, only a handful
of organizations are employing the tech-
nique for controlling and improving soft-
ware development process performance.
The performance application is more diffi-
cult, but we believe it has more far-reach-
ing results [2, 3].

Furthermore, we believe the applica-
tion to performance management is more

in line with the intent of SPC, i.e., SPC is
intended to optimize the performance of a
system, not a component subsystem. The
quality guru of the 1980s, Dr. Edward
Deming, warned against applying SPC to
sub-processes by themselves; he believed
these actions could lead to optimizing the
sub-process, possibly at the expense of the
system. Thus, the following discussion
concerns the application of SPC to man-
aging the performance of software proj-
ects.

Statistical Process Control
There are several methods for performing
SPC: scatter diagrams, run charts, cause
and effect diagrams, histograms, bar
charts, Pareto charts, and control charts [4,
5]. Although all of these methods are use-
ful, we will focus this article on control
charts.

SPC control charts, if successfully
applied, can be a significant impetus for
software process improvement. The
method provides distinction between nor-
mal and anomalous process data; it is, in
effect, a filter [6]. By knowing our normal
process, we can reengineer it to obtain
improvement in some performance
aspect. And, by identifying anomalous
behavior, we can seek the special cause (an
influence from outside the system) and
take action to prevent it from affecting
future performance.

The fundamental idea of process

improvement is that as the system is
observed over time, the process decreases
its variation and, increasingly, gets closer
to achieving its planned performance
objective because of the introduction of
improvements. SPC control charts facili-
tate this process improvement concept.
Thus, you have the reason why the recent-
ly issued Software CMM IntegrationSM

(CMMISM) [1] has specifically used the
words “statistically manage” in its CMM
Level 4 Process Area, “Quantitative
Project Management.”

There are seven SPC control chart
types, each having a specific application
[4, 5]. The control chart required for our
application is termed “Individuals and
Moving Range.” Symbolically, it is shown
as XmR, where X represents the individ-
ual observations, and mR represents the
moving range, the difference between suc-
cessive observations. The XmR control
chart is used when there is only one meas-
urement of the variable in an observation
period.

For all types of control charts, the
control limits establish the filtering
mentioned earlier. The high limit is plus
three sigma from the average of the
observations, whereas the low limit is
the average minus three sigma. Sigma is
a standard statistical measure of the
variation in the process. An estimate of
sigma is determined from the moving
range. Measured values outside of the
control limits have an extremely low
probability of occurrence, only 0.27
percent if the process follows a normal
distribution. Thus, any measured value
beyond the control limits is deemed an
anomaly, or in SPC terminology, a “sig-
nal,” and should be investigated by man-
agement.

SPC is a much more involved subject
than has been discussed here.
Significantly more complete informa-
tion is available in the references [4, 5,
6].
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Earned Value Management
An excellent reference for EVM is a book
by Quentin Fleming, Cost/Schedule Control
Systems Criteria, The Management Guide to
C/SCSC [7]. Just as with SPC, EVM is
much more involved than the discussion
in this paper. Here, we will only introduce
the EVM indicators “cost performance
index” (CPI) and “schedule performance
index” (SPI).

EVM is based upon establishing a
project baseline to achieve the “budget at
completion” (BAC); BAC identifies the
cost and completion points for the project
manager. The baseline performance is a S-
curve termed Budgeted Cost for Work
Scheduled (BCWS); it is a graph of
expected cost versus time. The in-process
performance tracking is facilitated by two
other curves, Actual Cost for Work
Performed (ACWP) and Budgeted Cost
for Work Performed (BCWP). BCWP is
the earned value; it represents the comple-
tion of project tasks and is traceable to the
values of cost and time duration allocated
to those tasks during the project planning.

During project execution, the CPI and
SPI indexes provide information about
performance efficiency. The indexes are

ratios. SPI is the efficiency of achieving
earned value with respect to the perform-
ance baseline (SPI=BCWP/BCWS).
Similarly, CPI is the efficiency of achiev-
ing earned value with respect to the actual
costs (CPI=BCWP/ACWP).

Application/Data Analysis 
Approximately three years ago, we began
applying SPC to the EVM indicators SPI
and CPI. We believed the merging of the
two powerful management techniques
held a considerable amount of promise.
Our concept was that the application of
SPC control charts to the monthly SPI and
CPI values could be used in the following
ways:
1. As a predictor of performance for the

remainder of a project in work.
2. To improve the planning of new proj-

ects by using historical data from com-
pleted projects.

3. To effect process improvement, i.e.,
improve both execution and planning
by using the measures of variation
(sigma) in monthly performance and
variance from the project plan
(planned cost and completion date).
As stated, we have been using the

method for some time. We have shared the
ideas and results in two previous articles
[2, 3]. Our results thus far indicate the
method will fulfill its promise. However,
its employment does require some addi-
tional understanding.

When we began preparing the control
charts, we observed that the representation
of the data affected the analysis and calcu-
lated results. To illustrate, we will use a
small sample of actual data represented as
both SPI and inverse SPI. Control charts
for each data representation are shown in
Figures 1 and 2. For the SPI chart, a signal
is indicated at data point six. By removing
the statistically anomalous data point six,
the true process performance can be
obtained. The control chart for SPI with
data point six omitted from the calcula-
tions is shown in Figure 3. The true
process has an average value of SPI (sym-
bolically, <SPI>) and an estimate of sigma
(σ) equal to 1.029 and 0.277, respectively.
The inverse SPI chart (Figure 2), however,
indicates there are no signals. Therefore,
the true process for this data representa-
tion has an average value of SPI-1 equal to
1.001, while sigma is estimated to be 0.304.
As you can clearly see, the analysis results
for SPI and SPI-1 are not equivalent.

Problem/Proposed Solution
Of course, we should not expect the aver-
age values to be equal for the SPI and SPI-1

analysis. However, if the signals found and

the estimates of sigma are not identical for
the two data representations, then we
must ask the question, “Which result is
correct, or is neither?” If we do not have
a basis for choosing a way to represent the
data and perform the analysis, then none
of the three desired outcomes expressed
in the Application/Data Analysis section
are achievable.

Another problem can be seen from the
histograms of CPI and CPI-1 shown in
Figure 4. The histograms were created
from nearly six years of monthly data
from one of our software development
projects. By visual inspection, these his-
tograms indicate that the data distribu-
tions are probably not “normal.” Thus,
predictions made by applying a normal
distribution to the population would likely
be inaccurate [5]. Therefore, similarly to
the discussion in the preceding paragraph,
unless there is a way to correct the behav-
ior of the data, we cannot use the SPC
information derived from the CPI and SPI
data for the performance prediction, proj-
ect planning, and process improvement
applications cited earlier.

There are several recognized correc-
tion methods that can be used when the
distribution of the data is not normal [5].
However, the most appealing is to trans-
form the data in a mathematical way to
approximate a normal curve. This is the
solution approach discussed in the
remainder of the article.

As we became more curious about the
differences in the results from the control
charts of SPI versus SPI-1 and CPI versus
CPI-1, we noticed a general bias. The aver-
age of the monthly values for either rep-
resentation is generally larger than its cor-
responding cumulative value (e.g., <SPI>
> SPIcum) and the signals found using
XmR control charts are predominantly the
observations having values greater than
1.0. Our analysis indicates the problem
occurs because the performance indicator
(PI) values below 1.0 cannot be less than
zero. It is impossible to have a negative
value for the PI because it is, simply, a ratio
of two positive numbers. However, the
values of the PI above 1.0 are unlimited1.

This behavior of the PI was deduced
to be incongruent with the three sigma
process limits computed for the individual
control chart. The process limits them-
selves are unbounded; conceivably, they
can have values ranging from plus to
minus infinity. The process limits are
equally spaced above and below the PI
average value. However, equivalent good
and poor observed values for the PI are
not spaced equally above and below the
nominal value of 1.0. The PI values less
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than 1.0 are virtually ignored; observed
performance values below the lower
process limit are rare occurrences. For
example, signals identified as values high-
er than the upper process limit for non-
inverted data are not detected when the
data is inverted. Both Figures 1 and 2 illus-
trate this inconsistency. Data point six is
identified as a signal by the SPI control
chart (Figure 1). However, when the data
are inverted, the control chart for SPI-1

(Figure 2) indicates data point six as noth-
ing unusual; it is within the lower process
limit, and thus, is considered to be part of
the process. Another significant observa-
tion from Figure 1 is that the lower
process limit value is below zero; there-
fore, any SPI value less than 1.0 cannot be
detected as a signal.

To make this point a little clearer, let us
use SPI (BCWP divided by BCWS).
Suppose BCWP is five units and BCWS is
one unit. Now suppose the performance is
reversed; BCWP is one unit, and BCWS is
five units. For the first instance, SPIa=5.0,
and for the second, SPIb=0.2. The two
instances are, numerically, the reciprocal of
the other and represent equivalent anom-
alous performance. SPIa=5.0 is excessive-
ly good schedule efficiency, whereas
SPIb=0.2 is excessively poor schedule effi-
ciency. The two values are not equidistant
from 1.0, the nominal value; SPIa is four
units away from 1.0, whereas SPIb has a
separation of only 0.8 units.

If we constructed a control chart with
these data points included, SPIa would
likely be detected as a signal. And if the
lower process limit happened to be a neg-
ative number, SPIb would be seen as part
of the process. However, for the inverse
data representation the signal detected
becomes SPIb

-1=5.0, while SPIa
-1=0.2 is

ignored. The signals identified are
switched with the change in data represen-
tation. Thus, it should now be understood
that the SPC control limits generally
detect EVM performance index indicator
signals greater than 1.0 and ignore poor
performance values less than 1.0, regard-
less of whether the data are represented as
inverted or non-inverted.

Due to the incongruence between the
PI data and the XmR process limits, a
method was sought to transform those PI
(or PI-1) values less than 1.0 from being
bounded by zero to unbounded. It was
hoped that if the data values less than 1.0
could be made to resemble the character-
istics of those values greater than one,
then consistent results could be obtained
from data represented as either inverted or
non-inverted.

The method for representing all of the
data as unbounded is extremely simple.
The PI data are transformed for the SPC
analysis by using the natural logarithm
function. Applying the natural logarithm
function causes PI values less than 1.0 to
be represented by negative numbers. The
transformed values are a data set that is
congruent with its corresponding three
sigma process limits. Thus, when the
transformed data are used for creating the
SPC control chart, a negative value lower
process limit will not necessarily mean that
a signal whose value is less than 1.0 will be
ignored. The transformed data provides
the possibility of identifying signals for
both high and low PI values.

Solution Criteria/Testing/
Results 
With the mathematical method defined for
transforming the data, tests can be per-
formed to determine whether or not the
application of the logarithm function
meets a set of desirable behavior charac-
teristics. Fundamentally, if the solution is
the correct one, it should not matter which
data representation is used for the SPC
analysis, inverted or non-inverted.

Specifically, the un-transformed aver-
age value of the inverted data should be
the reciprocal of the un-transformed aver-
age value of the non-inverted data2. The
value of sigma representing the process
variation for the non-inverted data should
equal the value of sigma determined from
the inverted data. The same data points
should be identified as signals in either
data representation. Lastly, the trans-
formed data should show improved agree-
ment to the normal distribution. If the
solution meets all of the criteria, we can
feel confident in its use.

To test the transformation, it is applied
to the SPI data previously analyzed (see
Figures 1 and 2). The transformed SPI
data, both the non-inverted and inverted
representations, are shown in the SPC
control charts, Figures 5 and 6, respective-
ly. Reviewing and comparing these control
charts, it can be said that the results satisfy
three of the four solution criteria:
1. The un-transformed average values,

i.e., <SPI>u and <SPI-1>u, are 0.994
and 1.006, respectively; <SPI-1>u is the
reciprocal of <SPI>u.

2. The signal identified in Figure 5 is
identical to the signal found in Figure
6, i.e., data point six. Figure 6 is the
mirror image of Figure 5 with respect
to the ordinate value 0.0.

3. The estimate of sigma is the same
value for both the inverted and non-
inverted representations of PI; i.e., the
value of σ is 0.259.
One test using a small data sample cer-

tainly is not proof that the transformation
meets the criteria in every instance.
However, we have run the analysis using
the natural logarithm transformation on
data from several projects (more than 400
data points) and have seen consistent
results. Furthermore, although it is beyond
the scope of this paper, through mathe-
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matical analysis it can be shown that each
of these three criteria for data representa-
tion equivalence is achieved by applying
the natural logarithm function.

To illustrate that the transformation
improves the normality, visually compare
the histogram shown in Figure 7 to its
counterpart in Figure 4. The same data are
used for both histograms; however, Figure
7 uses the transformed values. The his-
togram of the logarithm values has a more
normal appearance. To further explain the
improvement, the “goodness of fit” Chi-
Square (χ2) statistical test [5, 8] is applied
to the histograms3. Smaller values of Chi-
Square indicate more conformity to a nor-
mal distribution. The Chi-Square value for
the raw CPI-1 data is 5.958 (see Figure 4),
whereas the value for the transformed data
is 3.066 (see Figure 7). Thus, there is 48.5
percent improvement in Chi-Square by the
use of the natural logarithm function.

In addition to high and low signals
being detected equally, another significant
outcome from using the natural logarithms
of the data is that the resulting average
value of the performance indicator
(<PI>u) is unbiased. It is not generally
greater than the cumulative value of PI
(PIcum). Thus, the average performance
indicator values, <SPI>u and <CPI>u,
and their reciprocals can be used with con-
fidence in EVM calculations.

Summary
SPC applied to the EVM indicators, CPI
and SPI indexes, can be a very powerful
management tool. It has immense poten-
tial to improve both the planning and exe-
cution of software development projects

and to provide a measure of that improve-
ment. We have shown, however, that the
application has inconsistencies that detract
from its employment. A solution is pro-
posed for resolving the problem. A test for
the solution is described and performed
using a small set of SPI data. The results
of more extensive testing and further
mathematical analysis indicate the recom-
mended solution has merit. Employing the
data transform technique significantly
reduces the SPC-EVM application incon-
sistencies, thereby yielding much improved
results.◆
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Notes 
1. The observations discussed in this

paragraph are made for the non-invert-
ed data representation. The statements
apply equally as well for the inverted
data representation (PI-1).

2. The reciprocal relationship of the un-
transformed average values is also
needed for EVM calculations. The
cumulative values of the EVM per-
formance indicators, represented as
inverted and non-inverted data, pos-
sess this characteristic, i.e., (PIcum)-1 =
(PI-1)cum. Thus, to be confident using
the numbers from the SPC analysis in
EVM calculations, they must behave
in accordance with the cumulative val-
ues.

3. The definition of Chi-Square for this
application is: χ2 =Σi [(expected  counti –
observed counti)

2 / expected counti],
where “i” designates one of the five his-
togram areas (e.g., 0.6σ to 1.8σ).
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